Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality

Identifieur interne : 000110 ( PascalFrancis/Corpus ); précédent : 000109; suivant : 000111

Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality

Auteurs : Arlene M. Fiore ; J. Jason West ; Larry W. Horowitz ; Vaishali Naik ; M. Daniel Schwarzkopf

Source :

RBID : Pascal:08-0268210

Descripteurs français

English descriptors

Abstract

[1] Reducing methane (CH4) emissions is an attractive option for jointly addressing climate and ozone (03) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O3 responds approximately linearly to changes in CH4 emissions over a range of anthropogenic emissions from 0-430 Tg CH4 a-1 (0.11-0.16 Tg tropospheric 03 or ∼ 11-15 ppt global mean surface O3 decrease per Tg a-1 CH4 reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH4 emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH4 controls would offset the positive climate forcing from CH4 and 03 that would otherwise occur (from increases in NOx and CH4 emissions in the baseline scenario) and improve O3 air quality. We estimate that anthropogenic CH4 contributes 0.7 Wm-2 to climate forcing and ∼4 ppb to surface 03 in 2030 under the baseline scenario. Although the response of surface 03 to CH4 is relatively uniform spatially compared to that from other 03 precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 03 formation regime is NOX-saturated. In the model, CH4 oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 03 than CH4 oxidation in the free troposphere. In NOX-saturated regions, the surface 03 sensitivity to CH4 can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH4. Accurately representing the NOx distribution is thus crucial for quantifying the O3 sensitivity to CH4.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 113
A06       @2 D8
A08 01  1  ENG  @1 Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality
A11 01  1    @1 FIORE (Arlene M.)
A11 02  1    @1 WEST (J. Jason)
A11 03  1    @1 HOROWITZ (Larry W.)
A11 04  1    @1 NAIK (Vaishali)
A11 05  1    @1 SCHWARZKOPF (M. Daniel)
A14 01      @1 NOAA Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 1 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Atmospheric and Oceanic Sciences Program, Princeton University @2 Princeton, New Jersey @3 USA @Z 2 aut.
A14 03      @1 Woodrow Wilson School of Public and International Affairs, Princeton University @2 Princeton, New Jersey @3 USA @Z 2 aut. @Z 4 aut.
A20       @2 D08307.1-D08307.16
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000197746610400
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 08-0268210
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Reducing methane (CH4) emissions is an attractive option for jointly addressing climate and ozone (03) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O3 responds approximately linearly to changes in CH4 emissions over a range of anthropogenic emissions from 0-430 Tg CH4 a-1 (0.11-0.16 Tg tropospheric 03 or ∼ 11-15 ppt global mean surface O3 decrease per Tg a-1 CH4 reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH4 emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH4 controls would offset the positive climate forcing from CH4 and 03 that would otherwise occur (from increases in NOx and CH4 emissions in the baseline scenario) and improve O3 air quality. We estimate that anthropogenic CH4 contributes 0.7 Wm-2 to climate forcing and ∼4 ppb to surface 03 in 2030 under the baseline scenario. Although the response of surface 03 to CH4 is relatively uniform spatially compared to that from other 03 precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 03 formation regime is NOX-saturated. In the model, CH4 oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 03 than CH4 oxidation in the free troposphere. In NOX-saturated regions, the surface 03 sensitivity to CH4 can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH4. Accurately representing the NOx distribution is thus crucial for quantifying the O3 sensitivity to CH4.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Troposphère @5 01
C03 01  2  ENG  @0 troposphere @5 01
C03 02  2  FRE  @0 Ozone @5 02
C03 02  2  ENG  @0 ozone @5 02
C03 02  2  SPA  @0 Ozono @5 02
C03 03  2  FRE  @0 Méthane @5 03
C03 03  2  ENG  @0 methane @5 03
C03 03  2  SPA  @0 Metano @5 03
C03 04  2  FRE  @0 Climat @5 04
C03 04  2  ENG  @0 climate @5 04
C03 04  2  SPA  @0 Clima @5 04
C03 05  X  FRE  @0 Qualité air @5 05
C03 05  X  ENG  @0 Air quality @5 05
C03 05  X  SPA  @0 Calidad aire @5 05
C03 06  2  FRE  @0 Phénomène transitoire @5 06
C03 06  2  ENG  @0 transient phenomena @5 06
C03 07  2  FRE  @0 Simulation @5 07
C03 07  2  ENG  @0 simulation @5 07
C03 07  2  SPA  @0 Simulación @5 07
C03 08  2  FRE  @0 Modèle @5 08
C03 08  2  ENG  @0 models @5 08
C03 08  2  SPA  @0 Modelo @5 08
C03 09  2  FRE  @0 Monde @5 09
C03 09  2  ENG  @0 global @5 09
C03 09  2  SPA  @0 Mundo @5 09
C03 10  2  FRE  @0 Réduction @5 10
C03 10  2  ENG  @0 reduction @5 10
C03 11  2  FRE  @0 Coût @5 11
C03 11  2  ENG  @0 cost @5 11
C03 11  2  SPA  @0 Costo @5 11
C03 12  X  FRE  @0 Forçage @5 12
C03 12  X  ENG  @0 Forcing @5 12
C03 12  X  SPA  @0 Forzamiento @5 12
C03 13  2  FRE  @0 Ligne base @5 13
C03 13  2  ENG  @0 baseline @5 13
C03 14  2  FRE  @0 Phénomène précurseur @5 14
C03 14  2  ENG  @0 precursors @5 14
C03 14  2  SPA  @0 Fenómeno precursor @5 14
C03 15  X  FRE  @0 Précurseur @5 15
C03 15  X  ENG  @0 Precursor @5 15
C03 15  X  SPA  @0 Precursor @5 15
C03 16  2  FRE  @0 Air @5 16
C03 16  2  ENG  @0 air @5 16
C03 17  2  FRE  @0 Oxydation @5 17
C03 17  2  ENG  @0 oxidation @5 17
C03 17  2  SPA  @0 Oxidación @5 17
C03 18  2  FRE  @0 Couche limite @5 18
C03 18  2  ENG  @0 boundary layer @5 18
C03 18  2  SPA  @0 Capa límite @5 18
C03 19  2  FRE  @0 Analyse sensibilité @5 19
C03 19  2  ENG  @0 sensitivity analysis @5 19
C03 20  2  FRE  @0 Gaz effet serre @5 20
C03 20  2  ENG  @0 greenhouse gas @5 20
N21       @1 168
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0268210 INIST
ET : Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality
AU : FIORE (Arlene M.); WEST (J. Jason); HOROWITZ (Larry W.); NAIK (Vaishali); SCHWARZKOPF (M. Daniel)
AF : NOAA Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 3 aut., 5 aut.); Atmospheric and Oceanic Sciences Program, Princeton University/Princeton, New Jersey/Etats-Unis (2 aut.); Woodrow Wilson School of Public and International Affairs, Princeton University/Princeton, New Jersey/Etats-Unis (2 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D8; D08307.1-D08307.16; Bibl. 1 p.1/4
LA : Anglais
EA : [1] Reducing methane (CH4) emissions is an attractive option for jointly addressing climate and ozone (03) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O3 responds approximately linearly to changes in CH4 emissions over a range of anthropogenic emissions from 0-430 Tg CH4 a-1 (0.11-0.16 Tg tropospheric 03 or ∼ 11-15 ppt global mean surface O3 decrease per Tg a-1 CH4 reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH4 emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH4 controls would offset the positive climate forcing from CH4 and 03 that would otherwise occur (from increases in NOx and CH4 emissions in the baseline scenario) and improve O3 air quality. We estimate that anthropogenic CH4 contributes 0.7 Wm-2 to climate forcing and ∼4 ppb to surface 03 in 2030 under the baseline scenario. Although the response of surface 03 to CH4 is relatively uniform spatially compared to that from other 03 precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 03 formation regime is NOX-saturated. In the model, CH4 oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 03 than CH4 oxidation in the free troposphere. In NOX-saturated regions, the surface 03 sensitivity to CH4 can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH4. Accurately representing the NOx distribution is thus crucial for quantifying the O3 sensitivity to CH4.
CC : 001E; 001E01; 220
FD : Troposphère; Ozone; Méthane; Climat; Qualité air; Phénomène transitoire; Simulation; Modèle; Monde; Réduction; Coût; Forçage; Ligne base; Phénomène précurseur; Précurseur; Air; Oxydation; Couche limite; Analyse sensibilité; Gaz effet serre
ED : troposphere; ozone; methane; climate; Air quality; transient phenomena; simulation; models; global; reduction; cost; Forcing; baseline; precursors; Precursor; air; oxidation; boundary layer; sensitivity analysis; greenhouse gas
SD : Ozono; Metano; Clima; Calidad aire; Simulación; Modelo; Mundo; Costo; Forzamiento; Fenómeno precursor; Precursor; Oxidación; Capa límite
LO : INIST-3144.354000197746610400
ID : 08-0268210

Links to Exploration step

Pascal:08-0268210

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality</title>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="West, J Jason" sort="West, J Jason" uniqKey="West J" first="J. Jason" last="West">J. Jason West</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Naik, Vaishali" sort="Naik, Vaishali" uniqKey="Naik V" first="Vaishali" last="Naik">Vaishali Naik</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schwarzkopf, M Daniel" sort="Schwarzkopf, M Daniel" uniqKey="Schwarzkopf M" first="M. Daniel" last="Schwarzkopf">M. Daniel Schwarzkopf</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0268210</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0268210 INIST</idno>
<idno type="RBID">Pascal:08-0268210</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000110</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality</title>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="West, J Jason" sort="West, J Jason" uniqKey="West J" first="J. Jason" last="West">J. Jason West</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Naik, Vaishali" sort="Naik, Vaishali" uniqKey="Naik V" first="Vaishali" last="Naik">Vaishali Naik</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schwarzkopf, M Daniel" sort="Schwarzkopf, M Daniel" uniqKey="Schwarzkopf M" first="M. Daniel" last="Schwarzkopf">M. Daniel Schwarzkopf</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air quality</term>
<term>Forcing</term>
<term>Precursor</term>
<term>air</term>
<term>baseline</term>
<term>boundary layer</term>
<term>climate</term>
<term>cost</term>
<term>global</term>
<term>greenhouse gas</term>
<term>methane</term>
<term>models</term>
<term>oxidation</term>
<term>ozone</term>
<term>precursors</term>
<term>reduction</term>
<term>sensitivity analysis</term>
<term>simulation</term>
<term>transient phenomena</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Ozone</term>
<term>Méthane</term>
<term>Climat</term>
<term>Qualité air</term>
<term>Phénomène transitoire</term>
<term>Simulation</term>
<term>Modèle</term>
<term>Monde</term>
<term>Réduction</term>
<term>Coût</term>
<term>Forçage</term>
<term>Ligne base</term>
<term>Phénomène précurseur</term>
<term>Précurseur</term>
<term>Air</term>
<term>Oxydation</term>
<term>Couche limite</term>
<term>Analyse sensibilité</term>
<term>Gaz effet serre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Reducing methane (CH
<sub>4</sub>
) emissions is an attractive option for jointly addressing climate and ozone (0
<sub>3</sub>
) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O
<sub>3</sub>
responds approximately linearly to changes in CH
<sub>4</sub>
emissions over a range of anthropogenic emissions from 0-430 Tg CH
<sub>4</sub>
a
<sup>-1</sup>
(0.11-0.16 Tg tropospheric 0
<sub>3</sub>
or ∼ 11-15 ppt global mean surface O
<sub>3</sub>
decrease per Tg a
<sup>-1</sup>
CH
<sub>4</sub>
reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH
<sub>4</sub>
emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH
<sub>4</sub>
controls would offset the positive climate forcing from CH
<sub>4</sub>
and 0
<sub>3</sub>
that would otherwise occur (from increases in NO
<sub>x</sub>
and CH
<sub>4</sub>
emissions in the baseline scenario) and improve O
<sub>3</sub>
air quality. We estimate that anthropogenic CH
<sub>4</sub>
contributes 0.7 Wm-
<sup>2</sup>
to climate forcing and ∼4 ppb to surface 0
<sub>3</sub>
in 2030 under the baseline scenario. Although the response of surface 0
<sub>3</sub>
to CH
<sub>4</sub>
is relatively uniform spatially compared to that from other 0
<sub>3</sub>
precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 0
<sub>3</sub>
formation regime is NO
<sub>X</sub>
-saturated. In the model, CH
<sub>4</sub>
oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 0
<sub>3</sub>
than CH
<sub>4</sub>
oxidation in the free troposphere. In NO
<sub>X</sub>
-saturated regions, the surface 0
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH
<sub>4</sub>
. Accurately representing the NO
<sub>x</sub>
distribution is thus crucial for quantifying the O
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>D8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FIORE (Arlene M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEST (J. Jason)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NAIK (Vaishali)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHWARZKOPF (M. Daniel)</s1>
</fA11>
<fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>D08307.1-D08307.16</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000197746610400</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0268210</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Reducing methane (CH
<sub>4</sub>
) emissions is an attractive option for jointly addressing climate and ozone (0
<sub>3</sub>
) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O
<sub>3</sub>
responds approximately linearly to changes in CH
<sub>4</sub>
emissions over a range of anthropogenic emissions from 0-430 Tg CH
<sub>4</sub>
a
<sup>-1</sup>
(0.11-0.16 Tg tropospheric 0
<sub>3</sub>
or ∼ 11-15 ppt global mean surface O
<sub>3</sub>
decrease per Tg a
<sup>-1</sup>
CH
<sub>4</sub>
reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH
<sub>4</sub>
emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH
<sub>4</sub>
controls would offset the positive climate forcing from CH
<sub>4</sub>
and 0
<sub>3</sub>
that would otherwise occur (from increases in NO
<sub>x</sub>
and CH
<sub>4</sub>
emissions in the baseline scenario) and improve O
<sub>3</sub>
air quality. We estimate that anthropogenic CH
<sub>4</sub>
contributes 0.7 Wm-
<sup>2</sup>
to climate forcing and ∼4 ppb to surface 0
<sub>3</sub>
in 2030 under the baseline scenario. Although the response of surface 0
<sub>3</sub>
to CH
<sub>4</sub>
is relatively uniform spatially compared to that from other 0
<sub>3</sub>
precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 0
<sub>3</sub>
formation regime is NO
<sub>X</sub>
-saturated. In the model, CH
<sub>4</sub>
oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 0
<sub>3</sub>
than CH
<sub>4</sub>
oxidation in the free troposphere. In NO
<sub>X</sub>
-saturated regions, the surface 0
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH
<sub>4</sub>
. Accurately representing the NO
<sub>x</sub>
distribution is thus crucial for quantifying the O
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>ozone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Méthane</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>methane</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Metano</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Climat</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>climate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Clima</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>transient phenomena</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>models</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Monde</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>global</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Réduction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>reduction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Coût</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>cost</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Costo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Ligne base</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>baseline</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Phénomène précurseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>precursors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Fenómeno precursor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Air</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>air</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Oxydation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>oxidation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Oxidación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Gaz effet serre</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>greenhouse gas</s0>
<s5>20</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0268210 INIST</NO>
<ET>Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality</ET>
<AU>FIORE (Arlene M.); WEST (J. Jason); HOROWITZ (Larry W.); NAIK (Vaishali); SCHWARZKOPF (M. Daniel)</AU>
<AF>NOAA Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 3 aut., 5 aut.); Atmospheric and Oceanic Sciences Program, Princeton University/Princeton, New Jersey/Etats-Unis (2 aut.); Woodrow Wilson School of Public and International Affairs, Princeton University/Princeton, New Jersey/Etats-Unis (2 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D8; D08307.1-D08307.16; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[1] Reducing methane (CH
<sub>4</sub>
) emissions is an attractive option for jointly addressing climate and ozone (0
<sub>3</sub>
) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O
<sub>3</sub>
responds approximately linearly to changes in CH
<sub>4</sub>
emissions over a range of anthropogenic emissions from 0-430 Tg CH
<sub>4</sub>
a
<sup>-1</sup>
(0.11-0.16 Tg tropospheric 0
<sub>3</sub>
or ∼ 11-15 ppt global mean surface O
<sub>3</sub>
decrease per Tg a
<sup>-1</sup>
CH
<sub>4</sub>
reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH
<sub>4</sub>
emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005-2030) transient simulations, we demonstrate that cost-effective CH
<sub>4</sub>
controls would offset the positive climate forcing from CH
<sub>4</sub>
and 0
<sub>3</sub>
that would otherwise occur (from increases in NO
<sub>x</sub>
and CH
<sub>4</sub>
emissions in the baseline scenario) and improve O
<sub>3</sub>
air quality. We estimate that anthropogenic CH
<sub>4</sub>
contributes 0.7 Wm-
<sup>2</sup>
to climate forcing and ∼4 ppb to surface 0
<sub>3</sub>
in 2030 under the baseline scenario. Although the response of surface 0
<sub>3</sub>
to CH
<sub>4</sub>
is relatively uniform spatially compared to that from other 0
<sub>3</sub>
precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local 0
<sub>3</sub>
formation regime is NO
<sub>X</sub>
-saturated. In the model, CH
<sub>4</sub>
oxidation within the boundary layer (below ∼2.5 km) contributes more to surface 0
<sub>3</sub>
than CH
<sub>4</sub>
oxidation in the free troposphere. In NO
<sub>X</sub>
-saturated regions, the surface 0
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH
<sub>4</sub>
. Accurately representing the NO
<sub>x</sub>
distribution is thus crucial for quantifying the O
<sub>3</sub>
sensitivity to CH
<sub>4</sub>
.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Troposphère; Ozone; Méthane; Climat; Qualité air; Phénomène transitoire; Simulation; Modèle; Monde; Réduction; Coût; Forçage; Ligne base; Phénomène précurseur; Précurseur; Air; Oxydation; Couche limite; Analyse sensibilité; Gaz effet serre</FD>
<ED>troposphere; ozone; methane; climate; Air quality; transient phenomena; simulation; models; global; reduction; cost; Forcing; baseline; precursors; Precursor; air; oxidation; boundary layer; sensitivity analysis; greenhouse gas</ED>
<SD>Ozono; Metano; Clima; Calidad aire; Simulación; Modelo; Mundo; Costo; Forzamiento; Fenómeno precursor; Precursor; Oxidación; Capa límite</SD>
<LO>INIST-3144.354000197746610400</LO>
<ID>08-0268210</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000110 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000110 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0268210
   |texte=   Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023